1,842 research outputs found

    Floating-bending tensile-integrity structures

    Get PDF
    This is a conceptual work about the form-finding of a hybrid tensegrity structure. The structure was obtained from the combination of arch-supported membrane systems and diamond-type tensegrity systems. By combining these two types of structures, the resulting system features the “tensile-integrity” property of cables and membrane together with what we call “floating-bending” of the arches, a term which is intended to recall the words “floating-compression” introduced by Kenneth Snelson, the father of tensegrities. Two approaches in the form-finding calculations were followed, the Matlab implementation of a simple model comprising standard constant-stress membrane/cable elements together with the so-called stick-andspring elements for the arches, and the analysis with the commercial software WinTess, used in conjunction with Rhino and Grasshopper. The case study of a T3 floatingbending tensile-integrity structure was explored, a structure that features a much larger enclosed volume in comparison to conventional tensegrity prisms. The structural design of an outdoor pavilion of 6 m in height was carried out considering ultimate and service limit states. This study shows that floating-bending structures are feasible, opening the way to the introduction of suitable analysis and optimization procedures for this type of structure

    A Coarse Grained Model for DNA and Polymer Packaging: Statics and Dynamics

    Get PDF
    We present a numerical characterization of the statics and dynamics of the packaging of a semi-flexible polymer inside a sphere. The study is motivated by recent experiments on the packaging of DNA inside viral capsids. It is found that the force required to confine the coarse-grained polymer is in fair agreement with that found in experiments for the packaging of the phi29 bacteriophage genome. Despite its schematic nature, the model is capable of reproducing the most salient dynamical features of packaging experiments such as the presence of pauses during individual packaging processes and the trend of the resisting force as a function of chain packed fraction

    A Catalog of the Highest-energy Cosmic Rays Recorded during Phase I of Operation of the Pierre Auger Observatory

    Get PDF
    A catalog containing details of the highest-energy cosmic rays recorded through the detection of extensive air showers at the Pierre Auger Observatory is presented with the aim of opening the data to detailed examination. Descriptions of the 100 showers created by the highest-energy particles recorded between 2004 January 1 and 2020 December 31 are given for cosmic rays that have energies in the range 78–166 EeV. Details are also given on a further nine very energetic events that have been used in the calibration procedure adopted to determine the energy of each primary. A sky plot of the arrival directions of the most energetic particles is shown. No interpretations of the data are offered.Fil: Binet, V. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Física de Rosario (IFIR-CONICET); Argentina.Fil: Micheletti, M. I. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Física de Rosario (IFIR-CONICET); Argentina

    Role of Secondary Motifs in Fast Folding Polymers: A Dynamical Variational Principle

    Full text link
    A fascinating and open question challenging biochemistry, physics and even geometry is the presence of highly regular motifs such as alpha-helices in the folded state of biopolymers and proteins. Stimulating explanations ranging from chemical propensity to simple geometrical reasoning have been invoked to rationalize the existence of such secondary structures. We formulate a dynamical variational principle for selection in conformation space based on the requirement that the backbone of the native state of biologically viable polymers be rapidly accessible from the denatured state. The variational principle is shown to result in the emergence of helical order in compact structures.Comment: 4 pages, RevTex, 4 eps figure

    Towards modular bone tissue engineering using Ti-Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies

    Get PDF
    The production of large quantities of functional vascularized bone tissue ex vivo still represent an unmet clinical challenge. Microcarriers offer a potential solution to scalable manufacture of bone tissue due to their high surface area-to-volume ratio and the capacity to be assembled using a modular approach. Microcarriers made of phosphate bioactive glass doped with titanium dioxide have been previously shown to enhance proliferation of osteoblast progenitors and maturation towards functional osteoblasts. Furthemore, doping with cobalt appears to mimic hypoxic conditions that have a key role in promoting angiogenesis. This characteristic could be exploited to meet the clinical requirement of producing vascularized units of bone tissue. In the current study, the human osteosarcoma cell line MG-63 was cultured on phosphate glass microspheres doped with 5% mol titanium dioxide and different concentrations of cobalt oxide (0%, 2% and 5% mol), under static and dynamic conditions (150 and 300 rpm on an orbital shaker). Cell proliferation and the formation of aggregates of cells and microspheres were observed over a period of two weeks in all glass compositions, thus confirming the biocompatibility of the substrate and the suitability of this system for the formation of compact micro-units of tissue. At the concentrations tested, cobalt was not found to be cytotoxic and did not alter cell metabolism. On the other hand, the dynamic environment played a key role, with moderate agitation having a positive effect on cell proliferation while higher agitation resulting in impaired cell growth. Finally, in static culture assays, the capacity of cobalt doping to induce vascular endothelial growth factor (VEGF) upregulation by osteoblastic cells was observed, but was not found to increase linearly with cobalt oxide content. In conclusion, Ti–Co phosphate glasses were found to support osteoblastic cell growth and aggregate formation that is a necessary precursor to tissue formation and the upregaulation of VEGF production can potentially support vascularization

    Influence of conformational fluctuations on enzymatic activity: modelling the functional motion of beta-secretase

    Full text link
    Considerable insight into the functional activity of proteins and enzymes can be obtained by studying the low-energy conformational distortions that the biopolymer can sustain. We carry out the characterization of these large scale structural changes for a protein of considerable pharmaceutical interest, the human β\beta-secretase. Starting from the crystallographic structure of the protein, we use the recently introduced beta-Gaussian model to identify, with negligible computational expenditure, the most significant distortion occurring in thermal equilibrium and the associated time scales. The application of this strategy allows to gain considerable insight into the putative functional movements and, furthermore, helps to identify a handful of key regions in the protein which have an important mechanical influence on the enzymatic activity despite being spatially distant from the active site. The results obtained within the Gaussian model are validated through an extensive comparison against an all-atom Molecular Dynamics simulation.Comment: To be published in a special issue of J. Phys.: Cond. Mat. (Bedlewo Workshop
    • …
    corecore